CS395T: Foundations of
Machine Learning for

Systems Researchers
Fall 2025

Lecture 4: Attention,
Transformers, and Large
Language Models (LLMs)

Some material taken from Gianfranco Bilardi’s talk at Boost’24
and Sebastian Raschka’s blog.

https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention?utm_source=publication-search

Large * Machine translation
La nguage * Program generation

Models: * Chatbots

Appl_icatigns « Document summarization
* Al agents

Semantics (meaning) seem essential for these tasks.
Amazingly, they can be done without explicit notion of meaning!

Three Major Discoveries

1. Semantics of words and sentences can be captured by vectors of real numbers

2. Efficiently computable statistical models for natural languages

3. Probabilistic generation produces meaningful text

Exploiting statistical properties of language:

Cryptography: reconstruct a secret code (from al-Kindi, ¢.801-873 A.C., and
Caesar’s (100-46) codes, to computational cryptography (1970s-))

Compression: encode a text so that it occupies less space to save memory
and bandwidth (information theory Shannon (1916-2001), source coding).

Error correction: encode a text to facilitate detection and elimination of
alterations (Shannon, channel coding).

Main concepts

Statistical language models

Series of increasingly more sophisticated DNNs for translation
Embeddings: static and contextual (Zettlemoyer 2018)

Attention

Statistical Language Model

Token (word) vocabulary: T = {t1, ..., 7|}
Context: sequence of tokens: T~
X1 Xo.. Where xt €T, t=1,2,...

Language model: The conditional probabilities of the next token given a context
Prxt|lcs X1 Xo. .. Xt-1] = Pr[xt|ct], t=1,2,...
Text generation:

* Promptisinitial context €; (such as <START>)

e Given context C;, use model to produce probability vector and sample to pick next word X;
* Append X;to C;and repeat

Text translation:

* Promptis sentence to be translated followed by <START>

Building the language model

Analyze huge corpus of text and build table
context = probability vector ([p17,...p|T|])

Oxford English Dictionary has > 200K words (|T|)
)
Number of probabilities for context of length t = |T|t*' rf

Solution: train NN to compute probability vectors

Running example: English— Turkish

Source language: English, |S| words

Target language: Turkish, |U| words

Training data: English-Turkish sentence pairs

The cat ate the mouse.. Kedi fareyi yedi .

First attempt:
Encode words as one-hot vectors
Assume maximum sentence lengths in both languages is m.
Pad sentences (we will use xx) to extend all of them to length m.

DNN1 (Training)

I 1 I

CE-Loss CE-Loss CE-Loss
Probability vector (|U]) | t Probability vector (|U]) T | Probability vector (JU]) | t
The <START> Kedi The <START> fareyi The <START> <END>
cat XX cat Kedi cat Kedi
ate XX ate XX ate fareyi
m the m XX m the XX m the yedi
mouse XX mouse XX mouse
XX . XX . XX
XX XX XX XX XX XX
XX XX XX XX XX XX
|S| |U] |S| |U] S| |U]

One-hot encodings

of source & target words Teacher forcing: predicted word is thrown away

Example: Kedi fareyi yedi .

DNN1 (Inference)

; Kedi (JU|)

Sampler
Probability vector (|U]) |
Autoregressive decoding: DNN
- translated text produced sequentially
- translated text begins with <START>
- each word produced by DNN is appended The SSTART>
. . cat Kedi | <!
to input to predict next word - -
m the m X
; 7

S| U]

Drawbacks of one-hot encodings

Inefficient: curse of dimensionality
|S| and |U]| are huge: > 200K

Does not generalize
Unclear what happens with word not seen during training

Solution: vector-space models of language (embeddings)

Embeddings

Central ldea in Modern NLP

“You shall know a word by the company it keeps.”
J.R.Firth, English linguist (1957)

»

Firth’s work: basis for field of “distributional semantics

— “linguistic items with similar distributions have
similar meanings.”

Led to vector-space representations (embeddings) of
words, sentences, documents, etc.

Vector-Space Embeddings

Embedding maps token (word) to d-dimensional row-vector of reals
(e.g.) GloVe: Manning et al. 6 billion tokens, d =50,100,200,300

. . - V = R4 RIT iy
f : one-hot encoding —— embedding f*l _ softmax |——— sampler — word
robability
vector

(17| xd)
0-w;

Semantic feature space

Principle of compositionality: representation
of context is function of its word embeddings

F(c) = 1t(x1),1(x2);...,1(x)

Th Fee ce ntral Probability vector for next word for given
assumptions

context is function of representation of context

about [p1,p2,...pITI] = [i(F(c))

em bedd | ngS Similarity/relevance of word y to word x is

function of embeddings (cosine similarity,
Euclidean distance, etc.)

Alxy) = a(f(x),f(y))

https://plato.stanford.edu/entries/compositionality/

Word2Vec Embeddings

04 word similarity
L ‘h II‘\ Mlmllll | ”J) U | \Ini“‘ I hi\ I]I S:f ;’223322
g _ZZ |~|\ Wl{k lW’ w i rJ‘ \ w “ ‘[! ‘|‘ IV \ Nw animal 0:643801
041 horse 0.482581

Cosine similarity

Embeddlng of “queen”

Pamela Fox: An introduction to Vector Embeddings

https://techcommunity.microsoft.com/blog/educatordeveloperblog/a-visual-introduction-to-vector-embeddings/4418793

DNN2: Same as DNN1 w/embeddings

Kedi (JU])
1 $

CE-Loss Sampler
Probability vector (|U]) | t Probability vector (JU]) |
i (1]
representation DNN DNN
of context —» Output
probabilities embedding (d)
The <START> fareyi (JU|) The <START>

v: cat Kedi cat XX —

q f ate XX ate XX
represer‘ltatlon o T ” BT [
contextis mouse XX mouse XX
concatenation of : XX : XX
embeddings of X X X X
. XX XX XX XX
its words d d d d

Training Inference

Contextual Embeddings

Why contextual embeddings

Word embeddings from GloVe, Word2Vec etc. are static
* do notdepend on task
* do not change during training/inference

Embeddings in transformers are contextual (Peters et al. 2018) and learned
* handle polysemy (e.g. “l bank only at my local bank.”)
* contextualized using attention
* initial embeddings for training can be random since they are learned

Easier to understand if initial embeddings come from GloVe etc.
* “Teachingis the art of telling fewer and fewer lies.”

https://arxiv.org/pdf/1802.05365

How to embed context in V?

Design y so that it returns an embedding in V

One idea: some linear combination of GloVe word embeddings
F(c) = Xj-1a()) * f (%))
Embeddings squished together so you lose most information

To retain information, give higher weights (a(j)’s) to important words

What is important in sentence (e.g. “l bank at the local bank”) for one
word may not be important for other words
'@b‘
First “bank” needs “I” to resolve its part of speech ()
Second “bank” need “local” "rf'
e’

Context: X7 Xo X3 ... X,

F(c) = 1t(x1),1(x2);...,1(x))

f(x1)

F(c)
f(x3)

f(x2)

>

»

Refinement of idea

| . g
[Mar.29,1976 T H E Price 75 cents

 NEW YORKER

Embed context from perspective of each x;

F(c;x) = Xy a(i,) * f(x)) @ank only at my loc‘:\a_l/bank

Putting all F(c;x;) vectors together
Zmxd = pmxmxmxd \where X is matrix of word embeddings

Intuitively, combines strengths of
DNN2 (one embedding per word)
RNN (one embedding for entire context)

What should the A matrix be?

Choices for

A matrix

Find cosine similarity between
embeddings of each pair of words in
sentence

10

-08
Useful to visualize as matrix

-0.6

Normalize values in each row using

softmax -0.4

Attention matrix Amxm
-02

Detail: transformers compute cosine
similarity (or dot products) using new 0 1 2 3 words
vectors called Query and Key generated
by linear transforms on embeddings
(ignore for now)

Cosine similarity matrix
for four word sentence

Attention Variants

=T

(a) Full n? attention (b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window

Attention terminology

Self-attention: between words in same context

Cross-attention: between words in different contexts

Masked self-attention: word attends only to words before it
in sequence (attention matrix is lower triangular)

Decoder V"

Feed-forward

Vn

Implementation of |[EEEEE— -
Attention in

Self-attention

Transformers Feed-forward
(Vaswani et al.) T

V’I’L
Training: Turkish sentence
(masked self-attention)

Self-attention

Inference: current output
v (compute self-attention
only for the latest word)

English sentence

Encoders and decoders can be stacked (blocks/layers)

Encoder Self-attention

Linear transforms to generate

Query, Key, Value from embedding l a I' L l Attention WelghtS are
’_ZKBCl w‘ specific to the current input token
Wq 1) (2,1)

=0 [.

\

74
“IE]
/

N__ @][#@ :‘a
Current injput ("query”) 1 (2’1)\|‘
[v .
z® |4 W, I (2,2) I 22 | where 2 = Z’U(J)
B

£

Q(2,m)

AN
E 3
N

)

Input embeddings

https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention
https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention?utm_source=publication-search
https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention?utm_source=publication-search
https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention?utm_source=publication-search
https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention?utm_source=publication-search
https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention?utm_source=publication-search
https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention?utm_source=publication-search
https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention?utm_source=publication-search
https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention?utm_source=publication-search
https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention?utm_source=publication-search

Matrix view of self-attention

Embedding
size
d n
d iy
i dkqu
e
number ok T
o 1| % [K ——,| o »@
p s
d, Attention
e — n A .
matrix
_I wv I V
Foghs) n
d,
—
d=d,

Decoder
Self-Attention
(training):

MEEGle
Self-attention

Entire output sentence is available
but compute attention for a word
using only words before it in
sequence. Mimics what happens
during inference.

* Find cosine similarity matrix
* Setvalues in upper triangle to -oo

* Normalize values in each row with
softmax to get attention matrix A™M

 Compute contextual embeddings

(Z) for all words
med = Amxm med

words

10
-0.8

- 0.46 — OO — 00
-0.6
~- 04 0.051 — 00 -0.4
m- 0054 023 : -2

0 1 2 3 words

Magkesimosindlairmylaidyrixatrix

Decoder Self-Attention (Inference): KV-cache

d
d q
q
I W .l o In each round, compute self-
@é n attention only for latest token
Embedding
2 d « KV-cache: keep K,V matrices
(1 Q—qy n .
= 4 =d, and contextual embeddings for
D
b) R T all previous output tokens
v | [X ——] | We - l K] QK a@ g g
D
y rtortion: n « Compute key, query, value
d. —> o Attention vectors for latest token &
- - n A matrix update K,Q,V
_I ‘V'v > Vv
Lroignts)

e Compute contextual
embedding for token and
update Z
n

Cross-attention

d‘[
Embedding dq ==
size —
a I W >

number n
of tokens X

number
of tokens

m

new D

d=d, [

From input
sentence

Another design: send only W, and W, matrices from encoder to each decoder block/layer
Design shown in picture permits W, and W, matrices to be different in different layers

Multi-head attention

h heads (
/

[Scaled-dot-product attention

]

/AR —

MON K 1%

X W, W, W,d...WBT W, ... W,

I
Embedded sentence

Divide embedding
dimension d among h
heads

Each Q,K,V etc. specializes
on d/h dimensions

Concatenate outputs from
heads to produce final
contextual embeddings

—— e e e e ey

Output

Add & Norm

I

Translation [—

| 1
| |
' Probabilities e |
|
: ' f
! [__Softmax__|
| DT \ (sampler not shown)
| |
:___ i) Contextualized
Decoder | 7; [embedding of
: AL & MO : last word
I Feed :
: Forward I
|
: |
[ransformer Encoder Tpaaaass — | e |
Add & Norm ' Mutti-Head ! Cross-attention:
O r Feed i Attention . input &output sequence
Forward ' 1N x
|
1
|
|
|
|
1
1
|
|
|
|

. Nx{ | —(Add & Norm) =
. Sl Masked self-attention:
aswanl e a . Self-attention: Multi-Head Multi-Head asked seti-attention:
input sequence Attention Attention output sequence
A) A)
o . —
Positional D a Positional
Encdding \o/ _¥_ ___ 1 ____ ~\7_Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Computational Issues: Problem Size and Complexity

Hyper Parameters of (V)LLMs: representative values
« size of token dictionary |T|: O(277) = O(100, 000).
¢ embedding dimension d: 213 + 212 = 12, 288.

e size of input window n: 21% = 32, 768.

e numberofblocks N: =296 = 25+ 25,

* number of attention heads H: 12, 288 : 128 = 96.

Learnable Parameters: W|r|and, for each of the N levels, Wq, Wk, Wy, W1, b1, W2, ba2.

e number of learnable parameters: O(|T|d + 5Nd? + L.o.t.) = O(10'1-10"2) floating point
numbers (typically, 1FP = 2 bytes).

e size of training set: O(1011-1072) tokens (1 token = 2 bytes).

« computational effort for training: ??

« computational effort for inference: ??

e training cost: > 108 USD for ChatGPT-4, according to Sam Altman (CEO of OpenAl).

Vision Transformer (ViT)

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

* Extra learnable
[class] embedding

s~ - |
Wi @Hlﬁ{ﬁ EM
e

Linear Projection of Flattened Patches

|
Pmmua@éﬁdﬁééié

https://docs.nvidia.com/nemo-framework/user-
guide/latest/nemotoolkit/vision/vit.html

https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/vision/vit.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/vision/vit.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/vision/vit.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/vision/vit.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/vision/vit.html

Final remarks

Omitted details
Inner workings of Word2Vec, GloVe etc.
Tokenization
Positional encodings for tokens in transformer

Key insight: the point of attention
Standard explanation: embedding (V) for word relative to context

Better explanation: embedding (V) for context relative to word

Philosophical question

What does attention qu us over DNN2? Space-time complexity? Smaller
amount of training data’? More accurate inference?

Sutton’s “Bitter Lesson” argues domain-specific knowledge Ee.g., human-
icgenerated heuristics for chess-playing programs) is not useful for ML in the
ong run. However, attention seems to be NLP-specific concept.

Does it come down to domain-specific structure (good) vs. human-

designed heuristics (not needed in long run)? If so, is there other domain-

gpecmc_ st[?ucture to be discovered for making ML more “efficient” in some
imension?

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

3
{
Y
{
!

cgesere O

e

