
CS395T: Foundations of 
Machine Learning for 
Systems Researchers
Fall 2025

Lecture 4: Attention, 
Transformers, and Large 
Language Models (LLMs)

Some material taken from Gianfranco Bilardi’s talk at Boost’24
and Sebastian Raschka’s blog.

https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention?utm_source=publication-search


Large 
Language 

Models: 
Applications

• Machine translation
• Program generation
• Chatbots
• Document summarization
• AI agents

Semantics (meaning) seem essential for these tasks.
Amazingly, they can be done without explicit notion of meaning!



Three Major Discoveries

1. Semantics of words and sentences can be captured by vectors of real numbers

2. Efficiently computable statistical models for natural languages

3. Probabilistic generation produces meaningful text



History

Exploiting statistical properties of language:
  
Cryptography: reconstruct a secret code (from al-Kindi, c.801-873 A.C., and 
Caesar’s (100-46) codes, to computational cryptography (1970s-))

Compression: encode a text so that it occupies less space to save memory 
and bandwidth (information theory Shannon (1916-2001), source coding).

Error correction: encode a text to facilitate detection and elimination of 
alterations (Shannon, channel coding).



Main concepts

Statistical language models

Series of increasingly more sophisticated DNNs for translation

Embeddings: static and contextual (Zettlemoyer 2018)

Attention

 
 

  



Statistical Language Model

Token (word) vocabulary: T = {τ1, . . . , τ|T |}
Context: sequence of tokens: T * 

                      x1 x2 ..  where   xt ∈ T ,      t =1, 2, . . .
Language model: The conditional probabilities of the next token given a context
 Pr [xt|c1 x1 x2 . . . xt−1] = Pr [xt|ct] , t =1, 2, . . .
Text generation: 
• Prompt is initial context c1  (such as <START>)
• Given context ct, use model to produce probability vector and sample to pick next word xt
• Append xt to ct and repeat

Text translation:
• Prompt is sentence to be translated followed by <START>



Building the language model 

Analyze huge corpus of text and build table 
 context à  probability vector ([p1, …, p|T |])

Oxford English Dictionary has > 200K words (|T |)

Number of probabilities for context of length t = |T |t+1

Solution: train NN to compute probability vectors



Running example: English Turkish

Source language: English, |S| words

Target language: Turkish, |U| words
 
Training data: English-Turkish sentence pairs 
 The cat ate the mouse .        Kedi fareyi yedi .
       

First attempt: 
       Encode words as one-hot vectors 
       Assume maximum sentence lengths in both languages is m.
       Pad sentences (we will use xx) to extend all of them to length m.

®



DNN1 (Training) 

One-hot encodings
of source & target words

|S|

The
cat
ate
the

mouse
.
xx
xx

<START>
xx
xx
xx
xx
xx
xx
xx

CE-Loss

Kedi

DNN

m

|U|

m

|S|

The
cat
ate
the

mouse
.
xx
xx

<START>
Kedi
xx
xx
xx
xx
xx
xx

CE-Loss

fareyi

DNN

m

|U| |S|

The
cat
ate
the

mouse
.
xx
xx

<START>
Kedi
fareyi
yedi
.
xx
xx
xx

CE-Loss

<END>

DNN

m

|U|

……..
Probability vector (|U|) Probability vector (|U|) Probability vector (|U|)

Example: Kedi fareyi yedi .
Teacher forcing: predicted word is thrown away



DNN1 (Inference) 

|S|

The
cat
ate
the

mouse
.
xx
xx

<START>
xx
xx
xx
xx
xx
xx
xx

Sampler

Kedi (|U|)

DNN

m

|U|

m

Probability vector (|U|)

Autoregressive decoding:
     - translated text produced sequentially
     - translated text begins with <START>
     - each word produced by DNN is appended                   

to input to predict next word
<START>

Kedi
xx
xx
xx
xx
xx
xx



Drawbacks of one-hot encodings 

Inefficient: curse of dimensionality
 |S| and |U| are huge: > 200K   

Does not generalize
 Unclear what happens with word not seen during training

Solution: vector-space models of language (embeddings)



Embeddings

12



Central Idea in Modern NLP 

“You shall know a word by the company it keeps.” 
  J.R.Firth, English linguist (1957) 

Firth’s work: basis for field of “distributional semantics” 
–  “linguistic items with similar distributions have 
similar meanings.”

Led to vector-space representations (embeddings) of 
words, sentences, documents, etc.



Vector-Space Embeddings  

Embedding maps token (word) to d-dimensional row-vector of reals
 (e.g.) GloVe:  Manning et al.  6 billion tokens, d = 50,100,200,300

Semantic feature space



Three central 
assumptions 

about 
embeddings

Principle of compositionality: representation 
of context is function of its word embeddings 

 F(c) = g(f(x1),f(x2),…,f(xk)) 

Probability vector for next word for given 
context is function of representation of context
    
 [p1,p2,…p|T|] = b(F(c))

Similarity/relevance of word y to word x is 
function of embeddings (cosine similarity, 
Euclidean distance, etc.)

 A(x,y) = a(f(x),f(y))

https://plato.stanford.edu/entries/compositionality/


Word2Vec Embeddings

Embedding of “queen”

Pamela Fox: An introduction to Vector Embeddings

https://techcommunity.microsoft.com/blog/educatordeveloperblog/a-visual-introduction-to-vector-embeddings/4418793


DNN2: Same as DNN1 w/embeddings 

The
cat
ate
the

mouse
.
xx
xx

<START>
Kedi
xx
xx
xx
xx
xx
xx

CE-Loss

fareyi (|U|)

DNN

m

Probability vector (|U|)

d d

The
cat
ate
the

mouse
.
xx
xx

<START>
xx
xx
xx
xx
xx
xx
xx

Sampler

Kedi (|U|)

DNN

m m

Probability vector (|U|)

f

Training Inference

Output
embedding (d)

d d

g: 
representation of 
context is 
concatenation of 
embeddings of 
its words

b: 
representation 
of context  ® 
probabilities



Contextual Embeddings

18



Why contextual embeddings 

Word embeddings from GloVe, Word2Vec etc. are static
• do not depend on task
• do not change during training/inference 

Embeddings in transformers are contextual (Peters et al. 2018) and learned
• handle polysemy (e.g. “I bank only at my local bank.”)
• contextualized using attention 
• initial embeddings for training can be random since they are learned

Easier to understand if initial embeddings come from GloVe etc.
• “Teaching is the art of telling fewer and fewer lies.”

https://arxiv.org/pdf/1802.05365


How to embed context in V?

Design g so that it returns an embedding in V

One idea: some linear combination of GloVe word embeddings
        F(c) = ∑!"#$ 𝑎 𝑗 ∗ 𝑓(𝑥𝑗)     

Embeddings squished together so you lose most information 

To retain information, give higher weights (a(j)’s) to important words

What is important in sentence (e.g. “I bank at the local bank”) for one 
word may not be important for other words
      First “bank” needs “I” to resolve its part of speech
      Second  “bank” need “local”

F(c) = g(f(x1),f(x2),…,f(xk)) 

Context: x1 x2 x3 …xk

f(x1)

f(x2)

f(x3)

V

F(c)
g



Refinement of idea

Embed context from perspective of each xi 
  
       F(c;xi) = ∑!"#$ 𝑎 𝑖, 𝑗 ∗ 𝑓(𝑥𝑗)

Putting all F(c;xi) vectors together

Intuitively, combines strengths of 
 DNN2 (one embedding per word)
 RNN (one embedding for entire context)

What should the A matrix be? 

Context: x1 x2 x3 …xk

f(x1)

f(x2)

f(x3)

V

F(c;x3)

I bank only at my local bank

Zmxd = Amxm Xmxd      where X is matrix of word embeddings 

F(c;x1)

F(c;x2)



Choices for 
A matrix

Find cosine similarity between 
embeddings of each pair of words in 
sentence

Useful to visualize as matrix

Normalize values in each row using 
softmax 

Attention matrix Amxm

Detail: transformers compute cosine 
similarity (or dot products) using new 
vectors called Query and Key generated 
by linear transforms on embeddings 
(ignore for now) Cosine similarity matrix 

for four word sentence

words

words



Attention Variants



Attention terminology 

Self-attention: between words in same context

Cross-attention: between words in different contexts 

Masked self-attention: word attends only to words before it 
in sequence (attention matrix is lower triangular)



Implementation of 
Attention in 

Transformers 
(Vaswani et al.)

Encoder

Decoder

English sentence

Training: Turkish sentence
     (masked self-attention)

Inference: current output
(compute self-attention
 only for the latest word)

Encoders and decoders can be stacked (blocks/layers)



Encoder Self-attention

From:
https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention

Input embeddings

Linear transforms to generate
Query, Key, Value from embedding

https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention
https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention?utm_source=publication-search
https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention?utm_source=publication-search
https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention?utm_source=publication-search
https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention?utm_source=publication-search
https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention?utm_source=publication-search
https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention?utm_source=publication-search
https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention?utm_source=publication-search
https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention?utm_source=publication-search
https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention?utm_source=publication-search


Matrix view of self-attention

𝑑 = 	𝑑! 

Attention
matrix



Decoder
Self-Attention

(training):
Masked 

Self-attention

Entire output sentence is available 
but compute attention for a word 
using only words before it in 
sequence. Mimics what happens 
during inference.

• Find cosine similarity matrix 
• Set values in upper triangle to -¥
• Normalize values in each row with 

softmax to get attention matrix Amxm

• Compute contextual embeddings 
(Z)  for all words

Zmxd = Amxm Xmxd Cosine similarity matrix 

words

words

−	∞

−	∞ −	∞ −	∞

−	∞ −	∞

Masked cosine similarity matrix 



Decoder Self-Attention (Inference): KV-cache

𝑑 = 	𝑑! 

Attention
matrix

In each round, compute self-
attention only for latest token

• KV-cache: keep K,V matrices 
and contextual embeddings for 
all previous output tokens

• Compute key, query, value 
vectors for latest token & 
update K,Q,V

• Compute contextual 
embedding for token and 
update Z



Cross-attention

From input 
sentence

𝑑 = 	𝑑! 

Another design: send only Wk and Wv matrices from encoder to each decoder block/layer
Design shown in picture permits Wk and Wv matrices to be different in different layers



Multi-head attention 

Divide embedding 
dimension d among h 
heads

Each Q,K,V etc. specializes 
on d/h dimensions

Concatenate outputs from 
heads to produce final 
contextual embeddings



Transformer
for 

Translation
(Vaswani et al.)

Contextualized 
embedding of 

last word

Encoder

Decoder

(sampler not shown)

Self-attention:
input sequence

Masked self-attention:
output sequence

Cross-attention:
input &output sequence



Computational Issues: Problem Size and Complexity 

Hyper Parameters of (V)LLMs: representative values 
• size of token dictionary |T |: O(217) =  O(100, 000).
• embedding dimension d: 213 + 212 = 12, 288. 
• size of input window n: 215 = 32, 768.
• number of blocks N : ≥ 96 =  26 + 25.
• number of attention heads H: 12, 288 : 128 =  96.

Learnable Parameters: W|T | and, for each of the N levels, WQ, WK, WV , W1, b1, W2, b2.
• number of learnable parameters: O(|T |d + 5Nd2 + l.o.t.) ≈ O(1011−1012) floating point 

numbers (typically, 1FP = 2 bytes).
• size of training set: O(1011−1012) tokens (1 token ≈ 2 bytes).
• computational effort for training: ?? 
• computational effort for inference: ?? 
• training cost: > 108 USD for ChatGPT-4, according to Sam Altman (CEO of OpenAI).



Vision Transformer (ViT) 

https://docs.nvidia.com/nemo-framework/user-
guide/latest/nemotoolkit/vision/vit.html 

https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/vision/vit.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/vision/vit.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/vision/vit.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/vision/vit.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/vision/vit.html


Final remarks

Omitted details
 Inner workings of Word2Vec, GloVe etc.
 Tokenization
 Positional encodings for tokens in transformer

Key insight: the point of attention
 Standard explanation: embedding (V) for word relative to context
 Better explanation: embedding (V) for context relative to word



Philosophical question

What does attention buy us over DNN2?  Space-time complexity? Smaller 
amount of training data? More accurate inference?

Sutton’s “Bitter Lesson” argues domain-specific knowledge (e.g., human-
generated heuristics for chess-playing programs) is not useful for ML in the 
long run. However, attention seems to be NLP-specific concept. 

Does it come down to domain-specific structure (good) vs. human-
designed heuristics (not needed in long run)? If so, is there other domain-
specific structure to be discovered for making ML more “efficient” in some 
dimension?

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html



